

Product Data Sheet

Eastman™ Cellulose Acetate Butyrate (CAB-551-0.2)

Application/Uses

- Automotive OEM
- Coatings
- Coatings for automotive
- Coatings for Automotive Plastics
- Coatings for plastic
- Nail care
- Truck/Bus/Commercial Vehicles

Product Description

Remarkable polymers with a renewable backbone provided by nature itself.

Eastman™ Cellulose Acetate Butyrate (CAB-551-0.2) is a cellulose ester with high butyryl content and relatively low molecular weight. It is compatible with numerous cross-linking resins and has a lower solution viscosity. In coatings, Eastman™ CAB-551-0.2 gives clear films, reduces surface tack and mottling, minimizes cratering, improves flow and thermal reflow, and provides intercoat adhesion and good UV stability. It is useful for durable cross-linked formulations. Its good compatibility with a wide range of curing resin systems and its solubility in a wide variety of solvents and solvent combinations make it useful as an additive in numerous coating compositions. Eastman™ cellulose esters are based on up to sixty percent cellulose, one of the most abundant natural renewable resources.

Typical Properties

Property	Typical Value, Units
Butyryl Content	52 wt %
Acetyl Content	2 wt %
Hydroxyl Content	1.8%
Viscosity ^a	0.76 poise
Color b	50 ppm
Haze b	15 ppm
Acidity as Acetic Acid	0.02 wt %
Ash Content	<0.05%
Refractive Index	1.475
Melting Point	130-140°C
Glass Transition Temperature (T_g)	101°C
Specific Gravity	1.16
Wt/Vol	1.16 kg/L (9.67 lb/gal)

Bulk Density	
Poured	515 kg/m 3 (32 lb/ft 3)
Tapped	612 kg/m 3 (38 lb/ft 3)
Dielectric Strength	787-984 kv/cm (2-2.5 kv/mil)
Molecular Weight ^c M _n	30000
Tukon Hardness	15 Knoops

^a Viscosity determined by ASTM Method D 1343. Results converted to poises (ASTM Method D 1343) using the solution density for Formula A as stated in ASTM Method D 817 (20% Cellulose ester, 72% acetone, 8% ethyl alcohol).

Comments

Properties reported here are typical of average lots. Eastman makes no representation that the material in any particular shipment will conform exactly to the values given.

Eastman and its marketing affiliates shall not be responsible for the use of this information, or of any product, method, or apparatus mentioned, and you must make your own determination of its suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. No warranty is made of the merchantability of fitness of any product, and nothing herein waives any of the Seller's conditions of sale.

22-Aug-2006 2:32:41 PM

b Determination of color and haze made on a solution of CAB-551-0.2 dissolved in a Rule 66 exempt blend of lacquer solvents, using Pt-Co color standards and a monodisperse polystyrene latex suspension haze standard.

^c Polystyrene equivalent number average molecular weight determined by gel permeation chromatography.